Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Itch and pain are key symptoms of atopic dermatitis (AD) that significantly affect quality of life; various classes of treatment aim to reduce these symptoms.
Nonpharmacologic and topical therapies are effective for mild or moderate itch or pain symptoms and for maintenance therapy of AD.
Systemic therapies that target the immune system are effective as antipruritics, but many have side effects that limit their use.
Newer biologic and small-molecule therapies have been developed to target itch-mediated signaling pathways and have shown exciting results in AD patients.
Several experimental therapies are on the horizon that target nonhistaminergic itch pathways and show promise in clinical trials.
Pruritus, or itch, is the predominant feature of atopic dermatitis (AD) and it is an essential diagnostic feature of the disease ( ). The underlying mechanism of AD and the itch that it causes is multifactorial due to a complex interplay of genetic, environmental, and immunologic factors. A key aspect of AD pathogenesis and target of many first-line interventions is dysfunction of the physical epidermal barrier that contributes to transepidermal water loss (TEWL). TEWL has been shown to be associated with itch intensity in AD patients ( ). Barrier disruption allows for entry of irritants, allergens, and pruritogens from the external environment, leading to immune activation and inflammation, and pruritus. Defects in the barrier also lead to alkalization of the skin pH, promoting protease activation and upregulation of pruritogenic receptors and proinflammatory neuropeptides. The type 2 immunologic response, also key to pathogenesis of this disease, is mediated by cytokines such as interleulin-4 (IL4) and IL13, which are targets of newer AD medications. Other key immune mediators in AD are IL2, IL31, and IL33. Itch in AD is known to be nonhistaminergic in nature and not responsive to antihistamine medications. Emerging evidence shows that hypersensitivity of the neural pathways that conduct nonhistaminergic itch sensation in the peripheral and central nervous system may play a role in pathogenesis of this and other chronic pruritic diseases ( ).
Itch experienced in AD may vary from patient to patient, but surveys have shown that people with AD tend to experience itch more frequently at night, have high pleasurability with scratching, and have itch accompanied by a sensation of heat ( ). Aggravating factors commonly reported by AD patients include stress, perspiration, and skin dryness ( ). Skin pain is often reported in patients with AD, and while this is at least partially explained by scratching or excoriated lesions, a subset of AD patients experience painlike itch independent of scratching that is similar to neuropathic pain ( ). Pain is most often described by patients as burning, stinging, soreness, or tightness of the skin and is most likely to accompany lesions on the hands, feet, and around the mouth. AD-related pain has similar triggers to those associated with itch (i.e., sweat, stress, and warm temperatures) ( ). Skin pain is not often directly measured as part of standardized AD disease scores but has been shown to strongly correlate with measures of AD severity and symptoms (e.g., Patient Oriented Eczema Measure [POEM] and Eczema Area and Severity Index [EASI]) as well as poorer sleep and increased itch on numeric rating scales ( ). Quality of life is reported by patients to be greatly affected by their symptoms, as is seen in chronic itch of various etiologies ( ). The neurosensory mechanisms underlying pruritus in general and involving AD in particular are discussed in greater detail in Chapter 16 .
The goal of therapy in AD is to significantly reduce or eliminate the patient’s symptoms, namely pruritus and pain, while also reducing the burden of skin lesions and preventing infection. Itch is not only a bothersome symptom but also leads to scratching, which promotes further inflammation of the skin, excoriations, and the potential for infection and chronic skin changes. This itch-scratch cycle must be interrupted to prevent these complications. Numerous treatment methods have been proposed for reducing symptoms of itch and pain in AD, ranging from at-home skin care techniques to systemic medications to integrative medicine approaches. This chapter aims to review those techniques that have demonstrated efficacy in reducing the burden of these symptoms.
The goal of moisturization is to improve the epidermal barrier, so to limit TEWL and prevent exposure to irritants and allergens causing itch. Moisturizing agents are readily available over the counter (OTC) and are integral to the daily therapy of AD and can be used as an adjuvant to topical or systemic treatments. While moisturization has been shown to effectively reduce xerotic and pruritic symptoms of AD, systematic review has not shown a specific topical moisturizer to be most effective in AD ( ). Considering there are minimal adverse effects to moisturizer application, patients are recommended to reapply frequently and in liberal amounts. Additional moisturization and skin barrier repair recommendations are discussed in Chapter 22 .
There is limited evidence informing the recommended frequency or duration of bathing for individuals with AD, but many practitioners recommend warm water bathing up to once daily for no longer than 10 minutes. Bar soaps used while bathing are often alkaline in pH (~pH 10), which can lead to increased activity of proteases in the epidermis and subsequent degradation of the barrier function and activation of itch receptors ( ; ). To reduce the potential for exacerbation of pruritus, nonsoap cleansers (synthetic detergents or syndets) with a neutral or low pH (~pH 5–7) are recommended. Additional bathing recommendations are discussed in Chapter 26 .
Oatmeal-based products derived from the plant Avena sativa have been used for many years as an additive to bathing products and moisturizers. Colloid oatmeal agents have been shown to help with restoring normal skin pH, improve barrier integrity, reduce itch, and act as an antioxidant and antiinflammatory ( ). Formulations used as moisturizers or bathing products have been shown to improve AD-related symptoms, including pruritus, with regular use and are generally well tolerated ( ). Additional complementary and alternative modalities are discussed in Chapter 26 .
Topical corticosteroids (TCS) are the first-line pharmacologic treatment for AD, often introduced for maintenance therapy and use in the treatment of acute flares ( ). While TCS do not have a direct antipruritic effect, multiple studies have shown that routine use reduces AD symptoms, including itch and pain due to their antiinflammatory properties and reduction in itch-related cytokines such as IL31 ( ). TCS are available in various potencies that range from very low (class VII; e.g., hydrocortisone 0.25%) to very high (class I; e.g., clobetasol 0.05%). In general, the lowest potency to achieve control of disease for that patient should be used so to minimize adverse effects. Some evidence shows that moderate-to-high potency TCS offer a greater antipruritic effect than low potency ( ). Side effects of TCS on the skin are dependent on the potency, frequency, and location of application of the agent and include atrophic changes of the skin, telangiectasias, striae, and easy bruising ( ). Skin atrophy is more likely to occur in older patients and with use of higher potency TCS in areas of the body where the skin is thin (e.g., face, neck, intertriginous areas) or with occlusive therapies. Systemic side effects such as suppression of the hypothalamic pituitary axis are possible when using high-potency dosages or with extensive body surface usage.
Topical calcineurin inhibitors (TCIs) are a more recently introduced class of nonsteroid antiinflammatory treatments for AD. The antipruritic effectiveness of TCIs may be due in part to their stimulatory effect of the transient receptor potential ion channel member 1 (TRPV1) in cutaneous nerves ( ). These topicals (e.g., tacrolimus 0.03% or 0.1%, pimecrolimus 1%) have been shown to reduce pruritus scores in AD and may be as effective as midpotency TCs ( ). In a randomized trial, pruritus scores with pimecrolimus 1% were significantly improved by 56% versus only 34% with vehicle alone, and benefit was noted within 48 hours of treatment ( ). Similar reduction of pruritus scores and maintenance of the antipruritic effect was also demonstrated in a 26-week study ( ). Because these agents are nonsteroidal they are preferred for areas prone to steroid-induced atrophy (i.e., face). TCIs have the notable adverse effect of burning of the skin upon application, but this effect typically diminishes after several days of use ( ). The US Food and Drug Administration (FDA) placed a black box warning on TCIs, based on animal studies and case reports showing an increased incidence of malignancy, particularly lymphoma and skin cancers, in patients with AD using this medication ( ) but recent meta-analyses have not confirmed this association ( ).
Crisaborole is a phosphodiesterase-4 (PDE4) inhibitor that reduces the release of proinflammatory cytokines ( ). This nonsteroidal topical is used for the treatment of mild to moderate AD and has shown effectiveness in phase 3 studies in reducing itch in AD ( ). In a post hoc analysis of randomized controlled trials (RCTs), crisaborole has been demonstrated to have a rapid effect on pruritus score reduction, evident within 2 to 6 days of use ( ). Reduction of pruritus while using this topical medication has been shown to lead to significant improvements in quality of life scores among patients ( ). Crisaborole is generally well tolerated with use in thin or sensitive skin areas for which TCS are not appropriate ( ). The drug has a favorable safety profile and is generally well tolerated with adverse effects such as application site burning reported infrequently.
Topical anesthetics, analgesics, and cooling agents work by activating the nociceptors, thermoreceptors, or otherwise modulating cutaneous neural pathways. Capsaicin’s antipruritic properties are due to activation of the transient receptor potential 1 (TRPV1) receptors in keratinocytes and nociceptive C-nerve fibers. Application of topical capsaicin (0.025%–0.1% or 8% patch) has been shown to be effective in pain and itch relief of various etiologies ( ). Of note, topical capsaicin has an initial burning effect that can be avoided with pretreatment with topical anesthetics (i.e., lidocaine or EMLA). The topical anesthetic pramoxine 1% is available in formulations with ceramide moisturizers and has been shown to have antipruritic properties and provide relief in patients with AD-related itch ( ). Menthol activates thermosensitive TRPM8 ion channels present on sensory nerves to induce a cooling effect on the skin. As an antipruritic in 1% concentration, menthol is particularly useful for patients with AD who report that cooling of the skin (e.g., cold showers) improves their pruritic symptoms ( ). Menthol also has analgesic properties at low concentrations (e.g., ≤1%) but may cause irritation and cold-induced pain at higher concentrations. Polidocanol 3% concentration is another topical anesthetic with antipruritic efficacy demonstrated in a large observational study with few adverse effects noted ( ).
Topical ketamine blocks N -methyl- d -aspartate receptors (NMDA) and sodium channels to reduce the sensitivity of peripheral nerves. A combination cream of ketamine 5% to 10%, amitriptyline 5%, and lidocaine 5% (KAL) has been used in the treatment of chronic pruritus, and in one study, including patients with AD, pruritus scores were significantly improved with relief achieved within a few minutes on average ( ). KAL has been reported to be well tolerated in limited clinical studies, with burning sensation and redness reported in a minority of patients ( ). Ketamine is a controlled substance with potential for psychoactive effects if ingested, and therefore patients should be advised to not ingest the product and to limit use to prescribed areas only (<20% body surface area).
Endocannabinoids such as N-palmitoylethanolamine (PEA), an agonist of the cannabinoid 2 receptor, have been demonstrated to have antiinflammatory and antipruritic properties ( ). An open-label, noncontrolled, prospective cohort study in a group of nearly 2500 subjects with AD demonstrated that a cream containing PEA decreased pruritic symptoms by 47% within 6 days and by 60% after 4 to 6 weeks, improved sleep quality reported by patients, and was well tolerated ( ).
Wet wrap treatment (WWT) consists of a topical agent (i.e., TCS) applied to the skin and then covering the area with a wetted layer of bandages or nonirritant fabric (i.e., cotton) followed by an overlying layer of dry fabric. WWT may be left on for several hours and is typically continued for several days up to 2 weeks. WWT is often recommended for severe flares or recalcitrant disease to attain a relatively rapid reduction in symptoms, including itch. This method reduces itch through various mechanisms, including cooling of the skin, improving penetration of topical medications, and providing a physical barrier to prevent excoriation. The presence of a physical barrier may also prevent stimulation of cutaneous nerve fibers that are in close proximity to the damaged skin barrier ( ). WWT has been shown to be efficacious in reducing objective and subjective AD symptoms, including pruritus, as well as improvement in quality of life measures ( ). Because of the enhanced effect of the topical agents being applied it is recommended that low to medium potency corticosteroids be used or they be diluted to 5% to 10% of their original strength ( ).
Become a Clinical Tree membership for Full access and enjoy Unlimited articles
If you are a member. Log in here