Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Sleep-related breathing disorders (SRBDs) span varying degrees of airway obstruction during sleep and contribute to significant epidemiologic burden, especially in developed countries. The first report of SRBD appeared in 1976, when Guilleminault described eight children with sleep apnea syndrome , confirmed by polygraphic monitoring. These children exhibited loud snoring, excessive daytime sleepiness, decrease in school performance, morning headaches, and nocturnal enuresis—all of which were attributed to sleep fragmentation due to upper airway obstruction.
Population estimates of the prevalence of SRBD show an increasing trend over the last 2 decades, with some reports suggesting that, on average, 1 in 10 children has some degree of SRBD. This alarming increase is associated with the increase in overweight and obesity in children. With most patients remaining undiagnosed, SRBD may be one of the most common chronic illnesses of childhood. This has important ramifications for pediatric health as well as health care economics in the United States and elsewhere. If left untreated, the natural history of SRBD intersects with cardiopulmonary, cognitive, growth, and development domains, thereby driving health care utilization in a wide variety of areas. Consequently, early identification and treatment of SRBD effectively translate to better population health.
Epidemiologic studies in children with SRBD show a similar prevalence of pediatric and adult cases. Large population-based studies have identified risk factors in childhood SRBD. These large studies based on geographic or national cohorts in the United States, Italy, and Iceland have each placed the prevalence between 1% and 5%. However, a larger proportion may remain undiagnosed. A summary of 41 studies that investigated the prevalence of parent-reported snoring is shown in Fig. 68.1 . A meta-analysis of these studies found an overall prevalence of 7.45% (95% confidence interval, 5.8–9.6).
Studies assessing demographics of SRBD have identified African American children at an elevated lifetime risk of developing the condition. The same investigators found that Hispanic parents may tend to report snoring more often than Caucasian parents, with no difference in further diagnostic workup. No definite evidence of gender-based predisposition has been identified, although some investigators report an increased prevalence in prepubertal boys, thought to be due to hormonal physiologic changes.
Small cohort studies show the same prevalence of SRBD in 2- to 14-year-old children and an increased prevalence in older boys (over the age of 15). The finding of increased blood hemoglobin levels in older children who snore supports the hypothesis that habitual snorers are in a chronic hypoxic state that trigger physiologic compensatory mechanisms.
The association between obesity and SRBD has been studied extensively in children. The largest study to date, with over 25,000 participants, based on a self-administered questionnaire, showed a clear quantitative relationship between body mass index (BMI) and snoring. Other studies have not only identified a dose–response relationship related to the BMI z-score, but also described imaging characteristics that highlight the increased anatomic risk related to parapharyngeal fat deposition in obese children with SRBD. Fig. 68.2 emphasizes the role of parapharyngeal fat in upper airway obstruction. The odds of SRBD are significantly greater in children with three affected members with obesity when compared with subjects without affected family members.
Prematurity is regarded as an independent risk factor for development of pediatric SRBD, potentially due to incomplete development of upper airway physiologic mechanisms. In a population-based cohort of 850 children with significant number of premature births, Rosen et al. estimated that the odds ratio of SRBD among former premature children is three to five times that of the normal full-term population.
Studies of the prevalence of pediatric SRBD in households with secondhand smoke exposure are sparse. Of note, increased snoring in infants was reported as a consequence of passive smoke exposure, although polysomnographic (PSG) testing revealed normal sleep indices. More research is needed to quantify the risk of pediatric SRBD in children exposed to secondhand smoke.
SRBD has been linked to fragmented sleep and abnormal breathing patterns leading to airway obstruction. SRBD is categorized into three principal types: primary snoring (PS), upper airway resistance syndrome (UARS), and obstructive sleep apnea (OSA). The fundamental differences between the three types may be related to both frequency and intensity of obstruction.
Studies of OSA measured by incremental inspiratory air pressures have described the upper airway behaving as a Starling resistor with a collapsible segment in the oropharynx. In this model, airway collapse occurs when the critical closing pressure within any given location begins to exceed the pressure within the distal, but not the proximal, airway. Collapse is complete when critical closing pressure exceeds both upstream and downstream pressures. In addition, airway obstruction during sleep is a functional process that results from systematic failure of neuromotor control mechanisms that are centrally activated in response to natural hypercapnia. Marcus et al. proposed that in children with SRBD there is compromise of the dynamic processes that guard against hypoventilation from increased airway collapsibility during sleep.
The principal pathophysiologic processes related to SRBD are (1) anatomic obstruction, (2) neuromotor tone abnormalities, and (3) inflammation. Various airway disorders of infancy and childhood could be classified under these categories, as shown in Table 68.1 . The contribution of obesity to any or all of these categories cannot be overstated and has prompted increased attention and awareness of the condition in recent years.
Neonates and Infants |
|
Toddlers and Older Children |
|
Iatrogenic |
|
As shown in Table 68.1 , most children with SRBD have hypertrophy of lymphoid tissue within the palatine tonsils and the adenoids. Growth of adenotonsillar lymphoid tissue occurs in parallel with increase in skeletal dimensions until about 12 years of age, after which there is gradual cessation and regression of lymphoid tissue. The unopposed facial skeletal growth improves the upper airway during transition to adulthood. Recognition of adenotonsillar hypertrophy (ATH) as the principal cause for the reduction of oropharyngeal airway dimensions has resulted in tonsillectomy and adenoidectomy (T&A) becoming the first-line treatment for SRBD in children. By surgically removing the obstructive pathology, T&A results in resolution or significant reduction of SRBD symptoms in most children.
Airway obstruction other than ATH can occur at any nasal, oropharyngeal, or airway sites. Neonates and infants tend to present early due to their early dependence on the nasopharyngeal airway. Most causes of airway obstruction in this age group are related to congenital anomalies that affect the upper airway. They may be classified into (1) nasal or nasopharyngeal anomalies such as choanal atresia, piriform aperture stenosis, and nasal masses (e.g. dermoid, glioma, and encephalocele); (2) oral and oropharyngeal obstruction such as macroglossia (Beckwith–Wiedemann syndrome) and vascular malformations affecting the tongue; and (3) craniofacial anomalies that result in altered relationships between the maxilla and the mandible (Pierre–Robin sequence) as well as hypoplasia (e.g. Treacher–Collins syndrome).
Loss of pharyngeal dilator function that normally maintains the oropharyngeal airway during sleep may contribute to the risk of SRBD in children with neuromuscular conditions such as Down syndrome. The role of inflammation in the pathogenesis of SRBD has been investigated, specifically by markers such as C-reactive protein, and these studies have highlighted the robust correlation with severity of OSA and therapeutic response to intranasal corticosteroids and leukotriene antagonists.
The symptoms of pediatric SRBD are related to physiologic consequences of nocturnal airflow obstruction. In its mildest form, a child may have snoring alone. However, the spectrum of symptoms is wide, and attempts at standardizing and validating questionnaires to correlate symptoms with SRBD severity have had mixed results. Chervin et al. used a 22-item modified pediatric sleep questionnaire (PSQ) that strongly correlated with SRBD; the most correlation was seen in items relating to snoring, sleepiness, and behavior. In another study, parents were asked about the child's snoring, difficulty breathing, observed apnea, cyanosis, struggling to breathe, shaking the child to “make him or her breathe,” watching the child sleep, afraid of apnea, the frequency and loudness of snoring, and daytime symptoms such as excessive daytime sleepiness. The authors concluded that symptoms such as those listed were unable to distinguish between primary snoring and OSA. Questionnaires such as the PSQ are valid and reliable screening and clinical research instruments but cannot diagnose or quantify OSA.
The gold standard for diagnosis of SRBD in children is a pediatric PSG. Several clinical features of a snoring child should prompt suspicion and consideration of treatment in addition to the results of PSG. Fragmented sleep in a child can result in nocturnal symptoms such as snoring, enuresis, wakefulness, and observed apneic events as well as daytime symptoms that result from lack of sleep. The spectrum of daytime symptoms is intrinsically different in children with SRBD as opposed to adults. Whereas adults present with fatigability and sleepiness, pediatric SRBD manifests in the form of irritability, attention deficit, and hyperexcitability. In addition, cognitive dysfunction may result in poor school performance.
Untreated SRBD leads to a variety of sequelae as a result of intermittent hypoxemia during sleep. Cardiopulmonary compensation occurs via increase in pulmonary pressure and cor pulmonale. Chronic hypoxia has downstream effects on cerebral metabolism with adverse effects on cognitive function, executive ability, and brain development. Failure to thrive and growth retardation may be more pronounced in young children. Children with undiagnosed SRBD are likely to account for significant utilization of health care and ancillary services. There is compelling evidence that SRBD in children is associated with behavioral and neurocognitive problems and leads to reduced quality of life.
Become a Clinical Tree membership for Full access and enjoy Unlimited articles
If you are a member. Log in here