The Peritoneum


Normal Peritoneum

Knowledge of the peritoneum is important in understanding the pathology of the female genital tract. The uterine corpus, along with the fallopian tubes, the cervix, and the upper part of the vagina, develop from the müllerian ducts, which in turn derive from the mesenchyme of the urogenital ridge and the celomic lining epithelium (mesothelium) or primitive peritoneum. The mesothelium lining the peritoneal cavity is a single layer of flat or cuboidal cells with small round central nuclei and a single nucleolus. Cytoplasm is minimal with well-defined cell borders. On an ultrastructural basis, mesothelial cells show prominent and numerous long microvilli. This is in contrast to many müllerian epithelia, especially serous epithelia, where cilia are obvious by light microscopy and greatly overshadow the slender microvilli. The microvilli in typical müllerian adenocarcinomas tend to be shorter, stubbier, and are fewer in number than those of mesothelial cells.

Submesothelial mesenchyme anchors the mesothelium to the underlying tissue. Submesothelial stromal cells are important in the development of deciduosis, endosalpingiosis, endometriosis, and disseminated peritoneal leiomyomatosis. Microscopically, these peritoneal lesions are characterized by müllerian differentiation and are thought to derive from the so-called ‘secondary müllerian system,’ i.e., the pelvic and lower abdominal mesothelium and the underlying mesenchyme of females. In fact, the concept of the secondary müllerian system refers to a mechanism by which benign lesions and tumors of müllerian histology might arise from the peritoneum.

In females, the peritoneum is a nearly continuous membrane only interrupted in the pelvis by the fallopian tubes. The fallopian tubes are a potential passage for the transmission of pathogens, chemical and biologic, that have ascended through the genital tract from the external environment.

Inflammatory and Reactive Lesions

In adult females, most infections are ascending, as in pelvic inflammatory disease, which results in localized acute peritonitis. Acute diffuse peritonitis, characterized by a serosal fibrinopurulent exudate, is most commonly associated with perforated viscera as in appendicitis or diverticulitis and is usually bacterial or chemical in origin. In addition to the acute inflammatory reaction itself, chronic changes may occur, such as are seen in granulomatous and histiocytic reactions. In some cases, the inflammatory process leads to reactive changes.

Granulomatous Peritonitis

Both, infectious and noninfectious agents can cause granulomatous peritonitis. Among the former, Mycobacterium tuberculosis is the most common, and, less frequently, fungi and parasites. Granulomas are also induced by foreign material including keratin, by vernix caseosa or by meconium, in the form of necrotic pseudoxanthomatous nodules or as a postcautery reaction.

Tuberculosis

Tuberculous peritonitis is still encountered in the peritoneum, usually in immunosuppressed patients. It may also occur as a complication of chronic peritoneal dialysis. It may be secondary to tuberculous salpingitis or result from miliary tuberculosis. Clinically, it may manifest nonspecifically as widespread carcinomatosis. The presence of ascites, a pelvic mass, and marked elevation of serum levels of CA125 may lead to a false clinical suspicion of ovarian cancer. The granulomas are characterized by caseous necrosis and Langhans type giant cells; mycobacteria may be demonstrated by acid-fast stains or immunofluorescence techniques.

Suture Materials

Foreign-body granulomas are most commonly associated with suture material retained from prior surgical procedures. The sutures may consist of dense hyaline material in varying degrees of disintegration, or translucent threads. The foreign-body component of the granulomas can be highlighted with polarizing filters. Cellular reaction consists of macrophages, some multinucleated, and lymphocytes. There is both local fibrosis and serosal adhesions.

Surgical Glove Powder

Surgical glove powder, either talc or starch granules, is a common cause of granulomas. At laparotomy, the peritoneal granulomas may simulate carcinomatosis or tuberculosis. Usually the starch granulomas resolve within a few months, leaving no residua or only adhesions; however, some patients develop fibrosing peritonitis. Commonly, starch granulomas exhibit a typical foreign-body reaction and, less frequently, they appear as sarcoid granulomas, which lack necrosis, or tuberculoid granulomas, with necrosis, that simulate tuberculosis. The polyhedral and translucent starch granules are periodic acid–Schiff (PAS) positive and exhibit the typical Maltese cross under polarized light. Rarely, fat necrosis and rheumatoid-type necrotizing foci are identified as reactions to starch. Talc was once an important cause of granulomatous and fibrosing peritonitis because of its application as a lubricant on surgical gloves; however, its use has been discontinued. Talc is a greater irritant than starch and is poorly absorbed by some patients. Talc granulomas are of the typical foreign-body type. Multinucleated giant cells are numerous and contain pleomorphic crystal spicules readily seen with polarized light.

Contrast Media

Peritoneal granulomas may result from exposure to hysterosalpingographic contrast medium, which can be associated with a lipogranulomatous reaction. These appear as foreign-body giant cell reactions around spherical vacuoles from which lipid has been removed during processing. Lipogranulomas may become confluent and focal necrosis may occur.

Intestinal Contents

Foreign-body granulomas to intestinal contents may be seen following perforation such as in Crohn disease, diverticulitis, or malignant fistulas. These granulomas are generally confined to the serosa, but plant material and barium from a perforated colon may be identified in the wall or subserosal fat.

Cystic Teratoma (Dermoid Cyst) Rupture

Rupture of a mature cystic teratoma (dermoid cyst) is typically associated with widespread peritoneal granulomas and adhesions. The squamous cells, hairs, and sebum trigger a foreign-body reaction. This phenomenon occurs especially when the teratoma is removed by cystectomy during laparoscopic surgery. On occasion the reaction may also appear as sclerosing peritonitis and mimics a neoplasm at operation.

Keratin

Peritoneal foreign-body granulomas to keratin may be found in association with uterine or ovarian endometrioid carcinomas with squamous differentiation, or, less frequently, with squamous cell carcinomas of the cervix or atypical polypoid adenomyomas. Uterine examples are thought to result from retrograde transmission of acellular keratinous debris through the fallopian tubes ( Figure 31.1 ). Granulomas have been seen on the serosa of the adnexa, uterus, colon, and appendix. These granulomas are easily misinterpreted as metastatic carcinoma. Follow-up on these patients indicates that cell-free granulomas lack prognostic significance.

Figure 31.1, Keratin nodule in omentum. The patient had an endometrial adenocarcinoma with squamous differentiation and had received radiotherapy.

Cauterized Tissue

Foreign-body granulomatous reactions to cauterized tissue in pelvic peritoneal and ovarian biopsies are occasionally encountered in patients who have had endometriotic or other lesions treated in the weeks prior to biopsy. The lesions show central eosinophilic, focally refractile, amorphous material (representing the coagulated tissue and carbonaceous debris) palisaded by large numbers of multinucleated foreign-body giant cells and a peripheral lymphocytic infiltrate ( Figure 31.2 ). Lesions tend to hyalinize with age and may persist for many years.

Figure 31.2, Florid foreign-body granulomatous reactions to cauterized tissue.

Cesarean Delivery

Complicating cesarean delivery, the amniotic fluid contents may spill into the peritoneal cavity causing a syndrome clinically similar to bowel perforation. Amniotic fluid contains squamous cells, keratin, and sometimes lanugo hair (vernix caseosa). It may also contain meconium, which itself is composed of bile, pancreatic, and intestinal secretions. Grossly, the amniotic fluid contents appear as cheese-like yellow patches limited to the serosal layer of visceral organs. Meconium peritonitis caused by bowel perforation in utero can also be a problem in newborn infants. The hallmark of meconium peritonitis is calcification, which presumably results from the action of pancreatic enzymes.

Non-Granulomatous Histiocytic Lesions

Histiocytic infiltrates rather than discrete granulomas are occasionally found in the peritoneum. Melanin-rich histiocytes are sometimes found in cases where an ovarian dermoid cyst has ruptured. The spillage contains melanin, which the peritoneal histiocytes phagocytose. Grossly, the peritoneum may appear to be stained black or display small tumor-like nodules on its surface. Distinction of benign peritoneal melanosis from metastatic malignant melanoma is usually straightforward because of the bland nuclear features of the pigmented histiocytes and the absence of mitoses. Appropriate immunohistochemical stains can further indicate that the cells are histiocytes and not atypical melanocytes.

Occasionally, foci of endometriosis may disclose an abundance of histiocytes filled with ceroid, a wax-like, finely granular, and golden to yellow-brown pigment that is a form of lipofuscin, a lipid-containing residue of lysosomal digestion that is considered an aging or ‘wear and tear’ pigment. Ceroid is believed to be the end result of the breakdown of blood products after removal of iron. These histiocytic foci are sometimes called ‘necrotic pseudoxanthomatous nodules.’

Fibrosing Lesions

Sclerosing peritonitis is a reactive process in which a thickened fibrous or myofibromatous stroma develops on the peritoneal serosa. It is often idiopathic, although in some cases the cause is identified, such as prior peritoneal inflammation or a ruptured ovarian dermoid with spillage of the contents (see previous granulomatous reactions), chronic dialysis, or after surgical procedures.

In some cases, the sclerosing peritonitis has been described as part of a syndrome, often in association with a ‘luteinized thecoma of the ovary.’ Clinically, most of the women are young, usually under 30 years of age. Common presenting signs include abdominal enlargement and sometimes small bowel obstruction. Ascites may be present. Even when the patients have a luteinized thecoma, none has endocrine symptoms. A significant number of patients have been exposed to propranolol-type beta-blocking agents or antiepileptics.

Grossly, opaque to light-brown 1–3 mm granules or nodules appear matted together on the peritoneum or on the serosa of the involved organs. The omentum is usually indurated. Microscopic examination discloses a fibrotic process, with various chronic inflammatory cells ( Figure 31.3 ). There is usually some degree of mesothelial hyperplasia. Deeper tissues are relatively spared. Nodules are composed of moderately cellular fascicles of benign-appearing spindle cells resembling fibroblasts and myofibroblasts that contain occasional mitotic figures. In addition to cytokeratin reactivity, the cells also disclose immunoreactivity for vimentin and smooth muscle actin.

Figure 31.3, Sclerosing peritonitis. The fat lobules are surrounded by cellular fibromatous tissue.

Rarely, single or multiple fibrous nodules ranging up to 6 cm may occur in the gastrointestinal tract or mesentery in adults. Microscopically, the lesions are composed of fibro­blasts, collagen, and scattered mononuclear inflammatory cells. The fibroblastic cells show variable immunoreactivity for vimentin, CD117, muscle-specific actin, smooth muscle actin, and desmin, with negative staining for CD34 and ALK-1. These nodules have been designated as ‘fibrous pseudotumors.’

Occasionally, sclerosing lesions may be difficult to distinguish from desmoplastic mesothelioma, especially when the biopsy specimen is small. These tumors, however, are very rare in the peritoneal cavity, especially in women. Features that favor a diagnosis of mesothelioma include nuclear atypia, necrosis, organized patterns of collagen deposition (fascicular or storiform), and destructive infiltration into adjacent tissues.

Some patients with sclerosing peritonitis have been successfully treated utilizing antiestrogens and/or GnRH agonists.

Tumor-Like Lesions

Mesothelial Hyperplasia

Mesothelial hyperplasia is a common response to inflammation that occurs in any process that leads to irritation of a serosal surface, such as ascites, hernia sacs, endometriosis, pelvic inflammatory disease, or ovarian tumors. Grossly, the hyperplastic lesions may be seen at operation as multiple small nodules, but more commonly are incidental findings on microscopic examination. Microscopically, the changes range from a mild ( Figure 31.4 ) to a substantial increase in the number of mesothelial cells ( Figure 31.5 ), most of which have transformed from flat and relatively inconspicuous to cuboidal or even columnar. With marked hyperplasia, the mesothelial proliferation appears as sheets, clusters, ribbons, tubules, and sometimes as papillary formations that can be misinterpreted as metastatic adenocarcinoma ( Figure 31.6 ). Psammoma bodies are encountered occasionally and eosinophilic elongated cells resembling rhabdomyoblasts have been described.

Figure 31.4, Slight mesothelial hyperplasia of peritoneum.

Figure 31.5, Thin layer of moderately reactive mesothelium.

Figure 31.6, Reactive mesothelium. The enlarged mesothelial cells (arrow) that cover a focus of fibrous reaction superficially resemble metastatic adenocarcinoma.

Reactive mesothelial cells tend to be uniform in appearance. With minor degrees of reactivity, the nuclei are small, regular, round, or oval, and exhibit central nucleoli. The cytoplasm is eosinophilic or sometimes vacuolated and contains acid mucin (predominantly hyaluronic acid). With increasing degrees of reactivity, the nuclei enlarge and the chromatin increases. Nucleoli become more apparent and, in the extreme case, may become quite large and prominent ( Figure 31.7 ). Cells may become binucleated or multinucleated. In cytologic preparations the large macronucleoli may be mistaken as evidence for malignancy.

Figure 31.7, Markedly reactive mesothelial cells with prominent nucleoli.

The immunoprofile of normal mesothelium differs from that expected of epithelial tissue. As anticipated, it expresses cytokeratin intermediate filaments typical of epithelial cells. But it also expresses vimentin and desmin, which are indicative, respectively, of mesenchymal differentiation and specialization into muscle. In contrast, ovarian surface epithelium is immunoreactive for vimentin and desmin in fewer than half of cases. Ovarian inclusion cysts are nonreactive for vimentin and desmin, as are benign and borderline ovarian tumors. Mesothelial hyperplasia can occur within the superficial ovarian stroma overlying a borderline tumor and in such cases can be misinterpreted as invasive tumor. The differential reactivity of mesothelium (and mesothelioma) and müllerian tissue (and ovarian tumors) is discussed more fully in the following sections.

With greater degrees of injury, a layer of spindle-shaped mesenchymal cells may sometimes appear below the meso­thelial cells. In the resting state, this layer is inconspicuous, but, when stimulated, the cells may proliferate and produce a highly cellular desmoplastic tissue. Cells also express cytokeratin, vimentin, and desmin. These cells simulate myofibroblasts, and are thought to give rise occasionally to the muscular cells in the condition ‘disseminated peritoneal leiomyomatosis’ (see later).

The exuberant and sometimes pseudoinfiltrative growth that mesothelium can show, together with the increased mitotic activity that is frequently observed, may lead to a false impression of primary or metastatic carcinoma, despite the benign cytologic appearance of the cells ( Figure 31.6 ). Carcinoma cells generally demonstrate greater nuclear pleomorphism and more conspicuous mitotic activity. However, clusters of mesothelial cells are easily mistaken for metastatic carcinoma. This is true especially when mesothelial cells extensively involve sinusoids in pelvic lymph nodes either as small papillary clusters or as sheets of somewhat discohesive cells. Exuberant surface proliferations, sometimes forming sessile or polypoid nodules, can also simulate mesothelioma, a problem also encountered in the walls of hernia sacs. A useful morphologic feature that can help distinguish reactive mesothelial cell aggregates from metastatic carcinoma is their orientation at low-power magnification to one another (often in a line that can be traced for some considerable distance) ( Figure 31.6 ) and their relation to the position of the original peritoneal surface (as demonstrated by the presence of the peritoneal elastic lamina).

Organization of surface proliferative lesions and inflammatory exudates may leave adhesions of variable density, ranging from delicate strands of loose connective tissue to broad bands of dense, well-vascularized collagenous fibrous tissue. Entrapped inflammatory exudate within granulation tissue and proliferating sheets of mesothelial cells may lead to mesothelial (peritoneal) cyst formation. These may not become clinically apparent until months or years after the precipitating event.

Mesothelial hyperplasia must be distinguished from malignant peritoneal mesothelioma. The presence of necrosis, marked nuclear pleomorphism, and deep infiltration favors malignant mesothelioma. Immunostains may help in the differential diagnosis. Strong immunoreactivities for p53 and epithelial membrane antigen (EMA; nuclear and cytoplasmic, respectively) are characteristic of the cells of malignant mesothelioma but not reactive mesothelial cells; in contrast, hyperplasic mesothelial cells are usually desmin positive. Proliferative markers such as Ki-67 may also be helpful (approximately 25% vs 5% labeling index for malignant mesothelioma vs mesothelial hyperplasia, respectively). In some cases, however, the distinction between a reactive and malignant mesothelial lesion may be difficult or impossible, particularly in a biopsy samples. An apparently benign mesothelial proliferation occasionally precedes the appearance of a malignant peritoneal mesothelioma.

Mesothelial hyperplasia should also be distinguished from a borderline serous tumor of primary peritoneal origin. Grossly visible tumor, columnar cells with or without cilia, the presence of neutral mucin, and numerous psammoma bodies all favor a serous tumor. Immunohistochemical markers for epithelial differentiation may also be useful in the distinction (see Chapter 25 ).

Peritoneal Inclusion Cysts

Peritoneal inclusion cysts are unilocular or multilocular mesothelial-lined lesions that occur almost exclusively in women in the reproductive age group. They usually involve the pelvis, although may occur in other abdominal locations, including the omentum and mesentery, and are frequently associated with prior abdominal surgery. The origin of peritoneal inclusion cysts remains controversial; some authors consider them reactive lesions that develop in response to injury, whereas others favor their neoplastic nature.

Unilocular peritoneal inclusion cysts are usually incidental findings at laparotomy. Multilocular peritoneal inclusion cysts, also referred to as ‘benign cystic mesotheliomas,’ frequently form large bulky masses ( Figures 31.8–31.11 ) simulating a cystic ovarian tumor. Cysts are thin walled, contain clear proteinaceous fluid, and are lined by a single layer of flat to cuboidal, hobnail-shaped, mesothelial cells ( Figure 31.12 ) with bland nuclear features, although a degree of reactive atypia is occasionally seen. Tubal and squamous metaplasia of the mesothelial lining sometimes occurs. Inflammatory infiltrates, if present at all, are limited to sparse lymphocytic collections. The mesothelial cells are typically immunoreactive for calretinin, and less frequently positive for estrogen (ERs) or progesterone receptors (PRs), or both.

Figure 31.8, Mesothelial cyst.

Figure 31.9, Multiple small mesothelial cysts.

Figure 31.10, Multiple large mesothelial cysts.

Figure 31.11, Multicystic mesothelioma.

Figure 31.12, (A) Thin-walled mesothelial cysts in peritoneum. (B) The cyst is lined by numerous mesothelial cells. (C) Detail of the mesothelial cells.

In patients who have had peritonitis, fibrinous adhesions that are superficial to the deeper lining of normal mesothelium may develop and the underlying serosa can be mistaken for invasive serous carcinoma until attention is paid to its regularity and benign histology ( Figure 31.13 ).

Figure 31.13, (A) Serosa covered by adhesions. It is easy to mistake the normal mesothelium for serous adenocarcinoma due to its location within the peritoneal wall. (B) Detail of mesothelial inclusion.

Peritoneal inclusion cysts are confused with multilocular cystic lymphangiomas, which typically occur in children, more often in boys. Lymphangiomas are almost always localized in the mesentery of the small intestine, mesocolon, omentum, or retroperitoneum. They contain chylous material and, microscopically, show intramural lymphoid aggregates and smooth muscle, which are absent in peritoneal inclusion cysts.

Although no malignant behavior has been reported in peritoneal inclusion cysts, recurrence occurs in approximately one-half of cases from months to several years postoperatively. GnRH agonists or tamoxifen have successfully been applied to some patients.

Ovarian Remnant Syndrome

This condition exists if a patient who has had a ‘total bilateral oophorectomy’ later develops a palpable mass or experiences pelvic pain or other symptoms referable to ovarian tissue that has been left behind ( Figures 31.14 and 31.15 ). This condition is described more fully in Chapter 24 .

Figure 31.14, Ovarian remnant syndrome. Numerous corpora lutea appear surrounded by fibrous tissue.

Figure 31.15, Ovarian remnant syndrome. Ovarian tissue that was left behind at the time of oophorectomy has regrown and is functional.

You're Reading a Preview

Become a Clinical Tree membership for Full access and enjoy Unlimited articles

Become membership

If you are a member. Log in here