Research and the physician assistant


Introduction

Most physician assistant (PA) students choose to study to become PAs because they want to care for patients. If they had wanted to study for a research-oriented degree, they would have applied for MS or PhD programs in biochemistry, biology, public health, or experimental psychology. Nevertheless, PAs cannot avoid research. To provide high-quality, evidence-based patient care, PAs need to consult research daily. PAs who are interested in improving the quality of care given to patients may become part of a team that conducts new clinical research. PAs who become educators will engage in research on how to better educate students or deploy PA graduates. In short, no PA can escape research.

What is research?

Webster ’s New World Collegiate Dictionary defines research as “careful, systematic, patient study and investigation of some field of knowledge, undertaken to discover or establish facts or principles.” Research can take many forms: basic science research in the laboratory setting, survey research, clinical research, policy research, public health or epidemiologic research, anthropologic research, educational research, sociologic or psychological research, or workforce research. Most PAs will use or perform only a few of these subtypes of research. The research PAs most commonly use and conduct are outlined in the next section.

Types of research

Basic science biomedical research

Basic science research performed at many medical schools and research universities and by pharmaceutical companies is the first building block of understanding the pathogenesis of disease, diagnostic strategies, and treatments. These studies are performed at the atomic, molecular, genetic, or cellular levels. They may also involve animal models of anatomy, physiology, genetics, pathophysiology, and treatment. Biomedical research has produced many of the tools we use in the practice of clinical medicine, but much of what has turned out to be useful for clinicians has actually come from fields other than direct biomedical research. X-rays and magnetic resonance imaging both came from physics. Genetics originated in botany. Discovery of the Ebola virus came from a combination of epidemiology and virology. There is a growing emphasis placed on connecting basic science researchers with clinicians to move basic science discoveries “from bench to bedside” more quickly, and many funding agencies, such as the National Institutes of Health, are requiring investigators to collaborate more effectively to make this happen. This new approach to biomedical science is called “translational research.”

Unlike many physicians at academic medical centers, PAs traditionally have not been very involved in basic science research. Some PAs have worked in a basic science laboratory while studying at a university, but few PAs have the advanced training needed for basic science research. PAs generally choose to become PAs because they are interested in caring for people and are less interested in bench work. A few PAs have basic science PhDs and combine clinical practice and basic science research at academic medical centers, but this arrangement is fairly uncommon. More common are PAs at academic medical centers who are part of teams that engage in translational research. PAs may be involved in advising basic science teams on the clinical implications of a new basic science finding and are often involved in the clinical trials used to assess the innovation.

You're Reading a Preview

Become a Clinical Tree membership for Full access and enjoy Unlimited articles

Become membership

If you are a member. Log in here