Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Orthopedic oncology is one of the newest subspecialties in orthopedics that specializes in the management of musculoskeletal tumors, which are slowly increasing globally. The great variability of complexity and duration of oncologic orthopedic surgeries is such that there is no guide that can universalize the management for all patients. Surgery can range from short duration with limited bleeding to more demanding procedures such as sacrectomies or hemipelvectomies that require more complex management. Many procedures often require significant neurovascular dissection, removal of bone and/or significant muscle, replacement of large segments of bone and adjacent joints that may also require significant cement boluses for fixation, and free and rotational flaps. A clear understanding of what surgery implies allows proper positioning, airway management, and postoperative planning. –
Patients undergoing surgery to remove bone tumors have frequently received diverse preoperative medical treatments such as chemotherapy, radiotherapy, or a combination. The possible side effects of these agents are diverse. For example, doxorubicin, which is commonly used in bone chemotherapy, can cause dilated cardiomyopathy and arrhythmias. Bleomycin can lead to pulmonary fibrosis, and vincristine can contribute to peripheral neuropathy. In addition, patients who have undergone chemotherapy or radiotherapy may have significant anemia and thrombocytopenia, which could require transfusions of red blood cells or platelets. Obtaining adequate intravenous (IV) access and invasive monitors in preparation for resuscitation with fluids and possible transfusions can be a secondary challenge in ongoing cancer treatments. If the possibility of large blood loss due to a highly vascularized tumor is expected, preoperative tumor embolization may be considered. ,
Patients with cancer, in addition to having many comorbidities, might have received previous treatments of chemotherapy or radiotherapy; therefore the surgical team must be aware of the side effects of these oncologic treatments on different body organs. In addition, it is crucial to be aware of the natural evolution of tumors. Comorbidities, such as diabetes, cardiovascular, pulmonary, cerebrovascular, and renal diseases, should be thoroughly investigated. The presence of previous chronic pain, use of anticoagulants or antiplatelet agents, and history of thromboembolic disease should be identified. In patients who received neoadjuvant therapies, a key question is whether they have experienced a decrease in their tolerance to exercise before and after treatment.
The surgical and anesthesiology team must pay special attention to the features/findings detected during examination that may complicate the surgery. For example, patients with malignancy in the head and neck area must undergo rigorous examination of the airway. Tumors can cause airway obstruction and injury to the recurrent laryngeal nerve, as well as vascular obstruction, resulting in superior vena cava syndrome, which can be aggravated with the use of positive pressure ventilation. In addition, it is important to consider that these patients may have received neoadjuvant radiotherapy and therefore undergone anatomic changes.
There is increasing evidence (mostly retrospective and in vitro) that anesthesiology techniques might influence the outcomes of oncologic procedures. Laboratory data show some signal toward positive or negative effects depending on the drug or intervention studied. Although there are many variables to consider in the choice of anesthetic technique, perhaps the most important in the cancer patient are anesthetic maintenance (total intravenous anesthesia [TIVA] with propofol or AGB with inhaled agents) and the use of regional anesthesia.
Different research protocols have concluded that volatile anesthetics induce apoptosis of natural killer cells (NK) and T lymphocytes, which might potentially lead to a deleterious influence on tumor metastases. These agents increase angiogenesis by releasing hypoxia-inducible factor 1α (HIF-1α). The increase in HIF correlates directly with the severity of the tumor, the risk of metastasis, and the presence of chemoresistance. Propofol can be an alternative. It exerts its protective effects through several mechanisms, including antiinflammatory effects, type 2 cyclooxygenase (COX-2) inhibition and prostaglandin E2 (PGE2) reduction, increased antitumor immunity, and preservation of NK cell function. Propofol may also cause inhibition of matrix metalloproteinase (MMP), molecules that promote tumor invasion and dissemination. A retrospective cohort in the UK reported a 5% increase in overall survival in the 5-year follow up among >2600 patients in those who received propofol as an anesthetic technique compared to an inhaled technique. In a retrospective analysis, patients undergoing surgery for breast, colon, and rectal cancer found that after adjustment for all variables, the differences were not statistically significant. In another study in patients undergoing modified radical mastectomy, maintenance with propofol, compared with sevoflurane, reduced the recurrence rate at the 5-year follow up.
Regional anesthesia is commonly used in orthopedic procedures to prevent or mitigate the response to surgical stress by blocking afferent neural transmission, which prevents the nociceptive stimulus from reaching the central nervous system, while some techniques and anesthetics have been associated with better outcomes. , In two systematic reviews on the impact of different regional techniques (paravertebral block [PVB] and epidural) in patients with breast and gastroesophageal cancer, no difference was found in cancer outcomes compared to other anesthetic techniques.
Become a Clinical Tree membership for Full access and enjoy Unlimited articles
If you are a member. Log in here