Inherited Disorders of Renal Salt Homeostasis: Insights from Molecular Genetics Studies


Many of the mediators and regulators of renal salt reabsorption have been identified from physiologic studies. The manner in which these individual elements function in the context of integrated physiology in vivo is best understood from the consequence of mutations that alter the function of individual components. In addition, unbiased genetic screens have the ability to identify previously unrecognized elements of the regulatory network. Studies of inherited defects in renal salt reabsorption in humans have identified a large number of mutations that result in increased or decreased salt reabsorption. Genes implicated encode diverse proteins including ion channels and transporters, enzymes involved in hormone production, hormone receptors, protein kinases and elements of ubiquitin ligases. Importantly, these mutations have dramatic impact on blood pressure, unequivocally establishing the key role of varied renal salt reabsorption in human blood pressure variation. In addition, this work has identified previously unrecognized physiology that orchestrates the balance between salt reabsorption and potassium secretion. These findings have impacted drug development for hypertension and public health approaches to the control of blood pressure.

Keywords

blood pressure; hypertension; salt-losing nephropathy; glucocorticoid-remediable aldosteronism; aldosterone-producing adenoma; apparent mineralocorticoid excess; pseudohypoaldosteronism; Liddle Syndrome; Bartter Syndrome; Gitelman Syndrome

Introduction

Approaches to Identify Genes and Mutations that Contribute to Human Disease

The regulation of blood pressure is fantastically complex, with contributions from the brain, heart, vasculature, adrenal, and kidney. In the face of such complexity, it has been very difficult to identify the rate-limiting steps in the determination of long-term blood pressure from physiologic analysis alone. In this setting, human genetics has proven highly informative, because the finding of mutations in specific genes that result in significant effects on blood pressure can establish a causal link between specific genes, their biochemical pathways, and blood pressure.

There are a number of approaches to the discovery of human disease genes. One approach is to search for rare mutations with large effects on the trait. In the most extreme form these are so-called Mendelian traits, in which the presence of rare mutations produces a distinctive trait, and the transmission of that trait can be followed through families based on the clinical features. These traits generally follow a few simple patterns of inheritance. Autosomal dominant traits are produced by the inheritance of one mutated copy of a gene. As a result, such traits are commonly transmitted from an affected parent to half of their offspring, and multigenerational pedigrees with many affected subjects can sometimes be found. Dominant mutations can either be gain-of-function – in which the mutant gene has function not present in the normal gene – or less often loss of biochemical function, with a large effect produced by a 50% reduction in gene dosage. Dominant mutations that drastically impair reproductive fitness are commonly found as de novo mutations; new mutations found in affected index cases that are absent in their biological parents. Autosomal recessive traits require the inheritance of mutations in the genes on both chromosomes. Typical recessive pedigrees show affected subjects among a single sibship in a family, with parents being clinically unaffected and one in four of their offspring being affected. The mutations that cause autosomal recessive traits typically result in loss of biochemical function. Mutations on the X-chromosome produce distinctive patterns of transmission, since males have only one copy of this chromosome. As a result, these traits are never transmitted from affected fathers to their sons, and loss-of-function traits are found far more frequently among males than females. Other patterns of Mendelian transmission are much less frequent.

The development of complete genetic maps of the human genome identified extensive variations in DNA sequence, allowing the comparison of the inheritance of every segment of every chromosome to the inheritance of the Mendelian trait in families. With sufficient numbers of informative individuals and families, the chromosomal location of disease genes can be mapped, and genes in the linked interval can be searched for mutations. The finding of independent mutations that show specificity for the trait, and which significantly segregate with the trait in pedigrees, provides evidence that a gene responsible for the trait has been identified. To date, genes and their corresponding mutations that underlie more than 3000 human disease traits have been identified by this approach. The strength of Mendelian genetics has been that the identified mutations directly identify the gene whose function is altered, and is causal to the trait. A second strength is that because the effect size is typically very large, robust inferences about the effect of implicated genes on the trait are possible.

A second general approach to genetic analysis is genetic association. This approach has historically sought to determine whether specific common variants are found with significantly different frequency among cohorts of patients contrasting for specific phenotypes. Early efforts typically used candidate gene approaches, and commonly produced false-positive results. The development of dense maps containing millions of common variants called single nucleotide polymorphisms (SNPs) across the human genome, coupled with the ability to genotype these inexpensively, has led to large-scale genome-wide association studies (GWAS). These studies have allowed careful matching of genetic backgrounds of cases and controls, as well as rigorous statistical thresholds for significance. More than 1200 robust associations of common sequence variations with disease have been established using this approach. Strengths of the approach are the ability to find effects that are common in the population. These have been highly informative in diseases for which Mendelian forms have not been found. Weaknesses are that the common variants are most often not in genes, and consequently identifying the genes whose expression might be altered can be difficult to establish. Also, effect sizes are typically very small, changing disease risk by ~20%. As a result, new biological inferences are frequently difficult to immediately discern from these studies. Nonetheless, these studies can provide leads for diseases that have not yielded productive results from Mendelian studies.

Most recently, the ability to inexpensively sequence whole genomes or whole exomes (all the exons of protein-coding genes) has provided new opportunities for disease gene discovery. Classes of Mendelian traits that were previously intractable, such as diseases caused predominantly by de novo mutations, can now be solved. Moreover, one can anticipate that searches for rare variants with moderate effect size – less than typical Mendelian traits, but much larger than GWAS signals – are likely to be discovered by sequencing large cohorts of cases and controls.

Insight into Human Blood Pressure Variation from Genetic Studies

In the past 20 years, molecular genetic studies of rare Mendelian diseases featuring extreme forms of hyper- and hypotension have greatly contributed to our understanding of renal salt handling, and its role in blood pressure regulation. Despite the complexity of blood pressure regulation, which is influenced by diverse mechanisms including the neuronal, cardiovascular, and endocrine systems, many if not all of the genes thus far identified ultimately directly or indirectly affect renal salt reabsorption. Specifically, genes whose products increase renal salt reabsorption cause hypertension, while genes diminishing renal salt reabsorption result in hypovolemia, and sometimes life-threatening hypotension. Increased salt reabsorption is accompanied by water reabsorption to maintain normal concentrations of Na + , leading to increased intravascular volume, increased venous blood return to the heart, and increased cardiac output via the Frank–Starling mechanism. Blood pressure then rises according to Ohm’s law. These findings have implicated renal salt handling as a key element of long-term blood pressure homeostasis.

Nonetheless, hemodynamic patterns among hypertensive patients, even among those with primary increases in renal salt homeostasis, show increased systemic vascular resistance (SVR) with normal cardiac output. An explanation for this has been provided by Hall and Guyton, who have shown that tissues regulate their perfusion by increasing or decreasing vascular resistance according to metabolic demand. Dogs given aldosterone initially show expanded intravascular volume and increased cardiac output, but within weeks evolve to a state of high SVR and normal cardiac output. These findings establish that one cannot infer the initiating cause of hypertension from steady-state hemodynamic profiles.

Overview of Renal Salt Homeostasis

The kidneys filter about 180 liters of plasma per day, containing ~1.5 kg of salt; ~99.5% of the filtered salt load must be reabsorbed on a typical Western diet to maintain sodium homeostasis ( Figure 36.1 ). The bulk of this reabsorption (50–60%) occurs in the proximal tubule, driven by the basolateral Na + /K + -ATPase and apical Na + /H + exchanger, as well as co-transporters that couple uptake of glucose, amino acids, and other solutes to the favorable gradient for Na + reabsorption. Approximately 30% of the filtered load is reabsorbed in the thick ascending limb of Henle (TAL) via the Na + /K + /2Cl co-transporter NKCC2, the target of loop diuretics, and ~7–10% in the distal convoluted tubule (DCT) via the thiazide-sensitive Na-Cl co-transporter NCC. The fine-tuning of renal salt reabsorption (~2–5%) occurs in the connecting tubule (CNT) and cortical collecting duct (CCD), and is predominantly mediated by the epithelial sodium channel (ENaC), the target of the potassium-sparing diuretic amiloride. Many of the tubular channels, transporters, and regulators involved in these processes of salt reabsorption are affected by loss- and/or gain-of-function mutations that will be discussed in this chapter.

Figure 36.1, Diagram of the nephron and the renin–angiotensin–aldosterone system.

A major regulatory pathway that modulates renal salt reabsorption is the renin–angotensin–aldosterone system ( Figure 36.1 ). In response to intravascular volume depletion or reduced delivery of salt to the thick ascending limb of Henle, the juxtaglomerular apparatus of the kidney secretes the active form of the aspartyl protease renin. Active renin cleaves angiotensinogen that is produced by the liver and constitutively circulates in the blood; this cleavage produces the decapeptide angiotensin I (AI), which is then cleaved by the angiotensin-converting enzyme (ACE), resulting in the octapeptide angiotensin II (AII). Angiotensin II binds to a specific G-protein-coupled receptor in adrenal glomerulosa (the type 1 angiotensin II receptor or AT1 receptor). This binding results in the activation of signaling cascades leading to adrenal glomerulosa membrane depolarization, activation of voltage-gated calcium channels, calcium influx, and increased synthesis of the steroid hormone aldosterone. Aldosterone, an effector of this pathway, communicates a signal for increased salt reabsorption to the kidney: it binds to the mineralocorticoid receptor (MR), a nuclear hormone receptor located in cells of the DCT, CNT, and principal cells of the CCD (the so-called aldosterone-sensitive distal nephron), leading to increased salt reabsorption via ENaC, and also the NCC (see above). The renin–angiotensin–aldosterone (RAA) pathway is not only mutated in genetic disorders of salt homeostasis, but is also the target of multiple pharmacologic approaches in the treatment of hypertension, including renin inhibitors, ACE inhibitors, angiotensin receptor blockers, and aldosterone antagonists.

This chapter covers the genetic disorders that modulate blood pressure by altering renal salt reabsorption, as well as the insights into physiological mechanisms of blood pressure regulation derived from these discoveries.

Genetic Disorders Causing Hypertension

Mendelian forms of hypertension are rare among the general hypertensive population. Clues to the deduction that a patient may have an underlying Mendelian cause of hypertension generally come from the age of onset, the family history, and distinctive biochemical features. Hypertension is very uncommon in the first decade of life, and unusual before the age of 18; however, this is a typical finding among subjects with Mendelian hypertension. Consequently, Mendelian diseases should be considered in patients with early onset hypertension, and should be ruled out if there is also a family history of early onset hypertension. Other diseases that can cause hypertension in young subjects, such as structural renal defects and other causes of renal insufficiency, should be ruled out as well. Hypertension can be very severe, but this is not invariably the case. Biochemical findings that are most helpful in pointing to a diagnosis are plasma renin activity, aldosterone levels (best measured in 24 hour urine specimens), and serum/plasma electrolyte values. It is important to note that patients with aldosteronism need not have hypokalemia, and the absence of this finding should not be taken to exclude a disorder caused by increased aldosterone or increased activity of the mineralocorticoid receptor. An algorithm that is helpful in the evaluation of these patients is shown in Figure 36.2 .

Figure 36.2, A diagnostic approach to Mendelian hypertension.

Disorders of the Renin–Angiotensin–Aldosterone System

Mutations that Increase Activation of the Mineralocorticoid Receptor

A number of genes have been identified in which mutation results in hypertension due to increased activation of the mineralocorticoid receptor (MR). These include diseases caused by mutations that lead to renin-independent production of aldosterone, as well as diseases in which steroids other than aldosterone can activate MR.

Mutations Resulting in Increased Aldosterone Secretion

Glucocorticoid-Remediable Aldosteronism (Familial Hyperaldosteronism Type I)

Glucocorticoid-Remediable Aldosteronism (GRA) is an autosomal dominant disease featuring hypertension with inappropriate aldosterone secretion despite suppression of the renin–angiotensin system. Patients typically present with hypertension in the first two decades of life, and are found to have elevated aldosterone secretion despite suppressed plasma renin activity, indicating autonomous production of aldosterone. Hypertension is often severe, and affected subjects are at a markedly increased risk of cerebral hemorrhage at young ages. Hypokalemia and metabolic alkalosis are variable associated findings. Consistent with autosomal dominant transmission, the family history is usually positive, with one parent and about half of siblings and offspring having early diagnosis of hypertension, and there is a frequent history of early cerebral hemorrhage.

Unlike normal individuals, aldosterone secretion in GRA shows sustained increase with administration of the cortisol secretagogue ACTH. Moreover, affected subjects produce so-called hybrid steroids, 18-hydroxy- and 18-oxocortisol, which are present in negligible amounts in normal subjects. These hybrid steroids have hydroxylation at C-17, characteristic of metabolism by 17-alpha hydroxylase (CYP17 gene) in the adrenal fasciculata, and oxidation at C-18, characteristic of metabolism by aldosterone synthase, which is normally confined to the adrenal glomerulosa ( Figure 36.3 ). Suppression of cortisol secretion from the adrenal gland by administration of exogenous glucocorticoids also causes rapid and sustained suppression of aldosterone secretion, a finding that does not occur in normal individuals. These features suggest that aldosterone in GRA is produced in the adrenal fasciculata under the control of ACTH, rather than in adrenal glomerulosa under the control of the normal secretagogue angiotensin II (Ang II).

Figure 36.3, Adrenal steroid synthesis.

Analysis of linkage in a large GRA kindred demonstrated complete linkage of early hypertension to chromosome 8q, which contains the gene aldosterone synthase (CYP11B2) and the closely related gene steroid 11-β hydroxylase (CYP11B1). These two genes recently evolved from a common ancestor, and are highly similar at the DNA sequence level. Patients with GRA prove uniformly to have mutations that result from unequal crossing-over recombination between these two homologous genes ( Figure 36.4 ). This recombination event produces two mutant chromosomes, one with normal copies of aldosterone synthase and 11-β hydroxylase, and a third chimeric gene between them that fuses 5′ regulatory sequences from 11-β hydroxylase to coding sequences of aldosterone synthase. This is the mutation uniformly found in patients with GRA. The other mutant chromosome has no normal gene, and only a single hybrid gene that fuses 5′ sequences from aldosterone synthase to a coding sequence that produces 11-β hydroxylase enzymatic activity. This mutation is found in some patients with 11-β hydroxylase deficiency. These events occur in pre-meiotic germ cell development, hence only one is transmitted to a zygote. All of these recombination events seen in GRA occur upstream of exon 5, with the result that the hybrid genes in patients with GRA include the two amino acids in exons 5 and 6 that are critical for the resulting enzyme having aldosterone synthase rather than 11-β hydroxylase activity. These hybrid genes bear the 5′ regulatory elements of 11-β hydroxylase, and are consequently expressed in adrenal fasciculata under the control of ACTH, but encode aldosterone synthase enzymatic activity. As a consequence, aldosterone secretion in these patients is constitutive, driven by ACTH and the maintenance of normal cortisol levels. The renin–angiotensin system is suppressed, but this fails to turn off aldosterone production. These mutations thus account for the ectopic production of aldosterone in adrenal fasciculata and its control by ACTH, and explain the resulting hypertension.

Figure 36.4, Unequal crossing-over recombination between aldosterone synthase and 11-β hydroxylase causes GRA.

GRA should be suspected by the finding of hypertension in young individuals with elevated aldosterone level (best measured in 24 hour urine samples), despite suppressed plasma renin activity, particularly if there is a history of early hypertension among first degree relatives. Hypokalemia and metabolic alkalosis are common but by no means invariant, and the absence of these findings should not be used to exclude the diagnosis. Molecular genetic testing by either Southern blotting or PCR provides a sensitive and specific means for establishing the diagnosis. Because of the autosomal dominant transmission, there are frequently many affected members among extended families of index cases, and case finding can be performed by sequential sampling, testing all first degree relatives of affected subjects, then all first degree relatives of positive cases in subsequent rounds. Sampling in these families is likely to prevent morbidity and mortality from uncontrolled hypertension and early cerebral hemorrhage. Because of the availability of genetic screening, determination of urinary levels of hybrid steroids or dexamethasone suppression test is no longer recommended. Of note, family screening has demonstrated that not all individuals carrying the gene fusion are hypertensive, and first degree relatives of patients with confirmed GRA should be genetically screened even in the absence of hypertension.

Treatment options for GRA include use of mineralocorticoid receptor antagonists (spironolactone or eplerenone), amiloride or triamterene (which inhibit the epithelial sodium channel that drives both hypertension and hypokalemic alkalosis in GRA). Exogenous glucocorticoids can be used to shut down aldosterone production from the adrenal fasciculata. Careful attention to dosage in children is essential to maintain normal growth and to avoid glucocorticoid side-effects. Potassium-wasting diuretics such as hydrochlorothiazide and furosemide should be used with caution, because of the risk of severe hypokalemia.

Aldosterone-Producing Adrenal Adenoma and Familial Hyperaldosteronism Due to KCNJ5 Mutations

Aldosterone-producing adenoma, also known as Conn’s syndrome, is a common cause of severe hypertension, found in about 5% of patients in hypertension referral clinics worldwide, and in about half of patients diagnosed with primary aldosteronism. Patients typically present with worsening hypertension, and are found to have elevated serum and 24 hour urinary aldosterone levels in conjunction with suppressed plasma renin activity, consistent with these tumors having renin-independent aldosterone secretion. Hypokalemia and metabolic alkalosis are frequent, but not invariant findings. The finding of an adrenal mass by CT scan with increased aldosterone levels in ipsilateral adrenal vein plasma is considered diagnostic, and removal of these tumors corrects or improves blood pressure in the large majority of patients.

Exome sequencing of four aldosterone-producing adrenal adenomas (APAs) and matched blood DNA enabled identification of somatic mutations in the tumors. The results showed a low somatic mutation rate, with only 2–5 somatic mutations per tumor. Surprisingly, the K + channel encoded by KCNJ5 was mutated in two of these tumors. Examination of this channel in 22 tumors identified somatic KCNJ5 mutations in 8 tumors, and either of the same two mutations were found in all, substituting arginine for glycine at position 151 or arginine for leucine at position 168. These two positions lie in or abut the highly conserved K + channel selectivity filter that enables these channels to allow passage of K + but not other ions through the channel pore. Electrophysiologic studies demonstrated that these mutations cause markedly increased Na + conductance of the mutant channel, sufficient to depolarize the cell.

These findings explain the pathogenesis of APA in these tumors. The normal adrenal glomerulosa cell is hyperpolarized owing to constitutively open K + channels. Angiotensin II signaling results in closure of these channels, resulting in depolarization and activation of voltage-gated calcium channels, which raises intracellular calcium. Hyperkalemia produces the same results, potentially via increased frequency of depolarizing membrane potential oscillations. Increased intracellular Ca 2+ is the acute signal for increased expression of aldosterone synthase and other rate-limiting steps in aldosterone biosynthesis. Chronic signaling provides the stimulus for increased cell replication. Thus, these single mutations can explain both the cell-autonomous aldosterone secretion and cell proliferation that are the hallmarks of these benign tumors.

Subsequent work has confirmed these findings. The study of 287 tumors by Björklund et al. found the G151R or L168R mutations in 47% of APAs, and a markedly higher prevalence of these mutations among women with APA (63%) than men (22%). Only one additional mutation (E145Q) was found in two cases. Similar findings were observed by Boulkroun et al., who found either of these two mutations in 34% of all APAs with a similar bias for female subjects. These tumors are more prevalent among younger individuals, and tend to be slightly larger compared to non-KCNJ5-mutant tumors.

In addition to these mutations causing APAs, they also account for a rare inherited form of primary aldosteronism. In 2008, Geller et al. reported a father and two daughters with a new familial form of severe early-onset hypertension due to primary aldosteronism. Hypertension in these patients was diagnosed between the ages of 4 and 7 years; it was resistant to aggressive antihypertensive therapy, including spironolactone and amiloride. There was massive adrenocortical hyperplasia. Hybrid steroids 18-oxocortisol and 18-hydroxycortisol were elevated, however, in clear contrast to patients with GRA, there was a significant increase in aldosterone levels upon dexamethasone administration, and affected subjects did not have the gene fusion characteristic of GRA. Due to unrelenting hypertension, all three subjects underwent bilateral adrenalectomy in childhood, demonstrating massive adrenal hyperplasia (with paired adrenal weights up to 81 g, normal is less than 12 g) and diffuse hyperplasia of the zona fasciculata by light microscopy (with transitional zone morphology by electron microscopy). Screening of candidate genes revealed no pathogenic mutations.

Affected members of this family proved to have a T158A mutation in KCNJ5 which also modified channel selectivity, resulting in Na + conductance. In this case, since the mutation is present in every cell, rather than acquired somatically by a single cell, every cell in the adrenal glomerulosa is receiving the signal for aldosterone production and cell proliferation, accounting for the massive adrenal hyperplasia and severe aldosteronism at young ages. This Mendelian form of disease provides strong evidence that these single mutations are sufficient for cell proliferation and constitutive aldosterone secretion.

Subsequent studies have identified additional families with early severe aldosteronism and mutations in KCNJ5. Most interestingly, these include two different mutations at the same amino acid – G151 – that result in markedly different phenotypes. One of these inherited mutations is G151R, the same mutation found as a somatic mutation in APA. Patients with inherited G151R mutations develop massive adrenocortical hyperplasia, have difficult-to-control hypertension, and virtually invariably come to bilateral adrenalectomy for control of hypertension, similar to the T158A mutation described above. The other mutation is G151E. Patients with this mutation also present with early hypertension and aldosteronism; however, they do not develop adrenal hyperplasia, are typically responsive to antihypertensive therapy, and do not come to adrenalectomy. Most interestingly, the milder human phenotype resulting from G151E is associated with a much more severe electrophysiologic phenotype. G151E results in dramatically greater Na + conductance than G151R. The consequence of this is markedly increased sodium-dependent lethality. This suggests a model in which cells expressing the G151E mutation differentiate from a stem cell pool, produce aldosterone as they are born, but die rapidly, preventing development of hyperplasia. Their continuous renewal from a stem cell pool provides a long-term source for excessive aldosterone production, and a milder hypertension than in subjects with the G151R mutation.

This phenotype of primary aldosteronism without adrenal hyperplasia due to KCNJ5 mutation is as yet unique to the G151E mutation, while massive adrenal hyperplasia requiring adrenalectomy has also been reported with another KCNJ5 mutation, I157S.

While KCNJ5 mutations unequivocally explain the pathogenesis of a large fraction of APAs and a rare form of familial hypertension, the role of the wild-type channel in human adrenal function is less clear. Its activation by dopamine, an inhibitor of aldosterone secretion, suggests that the normal role of this channel might be to hyperpolarize cells, contributing to inhibition of aldosterone secretion.

Primary aldosteronism due to mutations in aldosterone synthase and KCNJ5 both produce constitutive secretion of aldosterone and hypertension. Patients with KCNJ5 mutations tend to present in the first several years of life with severe hypertension, while those with GRA are more frequently, though not exclusively, diagnosed later in the first or second decade. Consistent with greater disease severity among KCNJ5 families and impaired reproductive fitness, no families with more than four affected members have been reported to date, while a number of large, multigenerational families with more than 20 members with GRA have been studied.

Mutations Causing Impaired Cortisol Biosynthesis and Increased Mineralocorticoids

Congenital Adrenal Hyperplasia Due to 11-β-Hydroxylase Deficiency

Congenital adrenal hyperplasia (CAH) is a recessive disease, featuring cortisol deficiency caused by inherited defects of enzymes required for cortisol biosynthesis in the adrenal gland. Affected patients have increased ACTH levels due to impaired feedback inhibition, which stimulates excessive production of steroids proximal to the impaired step in cortisol biosynthesis. Precursor steroids can have androgenic effects, and female patients may present with virilization. In the most common form of CAH (21-hydroxylase deficiency), impaired synthesis of mineralocorticoids leads to salt-wasting (see below), while other defects can result in accumulation of precursors which have mineralocorticoid effects, leading to hypertension.

The most common form of congenital adrenal hyperplasia associated with hypertension is 11-β-hydroxylase deficiency ( Figure 36.3 ). Affected females may present with ambiguous genitalia at birth or with menstrual irregularities and hirsutism in adolescence or adulthood, while male subjects may present with penile enlargement or precocious puberty. Hypertension and hypokalemia are variable associated features, and are thought to occur due to the accumulation of 11-deoxycorticosterone, a moderately potent mineralocorticoid. However, there is no clear correlation between 11-deoxycorticosterone levels, the degree of virilization and the presence of hypertension. Renin and aldosterone are typically low.

In most cases, 11-β-hydroxylase deficiency is caused by recessive point mutations that cause loss-of-function of CYP11B1, although loss-of-function mutations due to the reciprocal product of unequal crossing-over between aldosterone synthase and 11-β-hydroxylase found in GRA (see above) can also produce loss-of-function mutations (in this case there is a chromosome that only expresses 11-β hydroxylase in adrenal glomerulosa).

11-β-hydroxylase deficiency should be suspected in female infants with ambiguous genitalia and male infants with penile enlargement. In the late onset form, hirsutism and menstrual irregularities in female patients and precocious puberty in boys may be the only signs of presentation. The abnormal hormone profile, in particular the finding of elevated basal and ACTH-stimulated 11-deoxycortisol concentrations, is diagnostic. Treatment with exogenous glucocorticoids suppresses ACTH secretion and the accumulation of precursor steroids. Precursor steroids should be monitored, and glucocorticoid dosage has to be carefully adjusted to avoid growth inhibition in children and exogenous Cushing’s syndrome. Persistent hypertension may require additional treatment with aldosterone antagonists or amiloride.

Congenital Adrenal Hyperplasia Due to 17-α-Hydroxylase Deficiency

17-α-hydroxylase deficiency is a rare cause of congenital adrenal hyperplasia. Patients typically present in adolescence with lack of pubertal development. Genetic females have primary amenorrhea and do not develop secondary sexual characteristics; genetic males typically have complete pseudohermaphroditism with female external genitalia and intra-abdominal testes, although ambiguous genitalia have been reported. Hypertension is a common finding, and may be associated with hypokalemia.

17-α-hydroxylase deficiency is caused by mutations in CYP17. The encoded enzyme is expressed in adrenal gland and gonads, and has both 17-hydroxylase and 17,20-lyase activities ( Figure 36.3 ). Most patients with CYP17 mutations thus have combined deficiencies of both enzymatic functions, although isolated deficiency of 17,20-lyase activity has been reported. Hydroxylation at carbon 17 of the steroid nucleus is required for cortisol production, and in its absence normal activation of the glucocorticoid receptor is not achieved. In addition, 17,20-lyase activity is needed for the generation of androgen and estrogen precursors from cortisol precursors.

Patients with CYP17 mutations consequently have cortisol deficiency leading to elevated ACTH levels, as well as androgen and estrogen deficiency, accounting for sexual infantilism and pseudohermaphroditism. Hypertension is caused by activation of the mineralocorticoid receptor (MR) due to increased levels of 11-deoxysteroids (corticosterone, 11-deoxycorticosterone, and 18-hydroxy-deoxycorticosterone), similar to the mechanism of hypertension in 11-β-hydroxylase deficiency. As a result, renin and aldosterone are typically suppressed.

The diagnosis is based on the clinical presentation and characteristic hormone profile, and treatment relies on replacement of glucocorticoids and sex steroids, the latter starting in adolescence.

Mutations that Impair Conversion of Cortisol to Cortisone: Syndrome of Apparent Mineralocorticoid Excess

The syndrome of apparent mineralocorticoid excess (AME) is an autosomal recessive disease featuring severe hypertension presenting in the first decade of life. It is associated with suppression of both the renin–angiotensin system and aldosterone secretion. Hypokalemia and metabolic alkalosis are common associated findings. The hypertension can be mitigated with antagonists of the mineralocorticoid receptor, which suggested the presence of a new circulating mineralocorticoid; however, such a molecule was not found. Instead, a defect in cortisol metabolism was identified in affected patients, causing reduced conversion of cortisol to cortisone, with a consequently increased half-life of cortisol.

How this defect in cortisol metabolism resulted in hypertension remained unclear until the cloning and subsequent purification of the mineralocorticoid receptor (MR). In vitro , cortisol binds and activates MR as well as aldosterone does, while cortisol is normally a weak mineralocorticoid in vivo . This discrepancy is explained by the presence in many aldosterone-responsive cells of an enzyme, steroid 11-β hydroxysteroid dehydrogenase type 2 (11βHSD2), that “protects” MR from cortisol by converting cortisol to cortisone. Cortisone has negligible ability to activate MR. The finding of homozygous loss-of-function mutations in 11βHSD2 in AME provided proof of the relevance of this mechanism in vivo . These findings fully explain the pathophysiology of AME, and are confirmed by the recapitulation of AME in mice deficient for 11βHSD2.

AME should be suspected in young individuals with hypertension, suppressed PRA, and low aldosterone levels. AME shares these clinical features with Liddle syndrome (see below); however, Liddle syndrome is autosomal dominant, and affected subjects consequently commonly have one parent with early severe hypertension, and may have other relatives in earlier generations or other branches of the pedigree with similar findings. In contrast, AME is suggested by the absence of disease in earlier generations and the presence of parental consanguinity. The diagnosis of AME can typically be made by genetic testing involving sequencing of 11βHSD2. Abnormal cortisol:cortisone ratios can also establish the diagnosis.

Inhibitors of the mineralocorticoid receptor, such as spironolactone or eplerenone, or inhibitors of the epithelial sodium channel, such as amiloride or triamterene, are treatment options in AME. Eplerenone has recently been suggested for prevention of strokes even in the absence of hypertension; however, the utility of this approach is not established.

Intriguingly, exuberant ingestion of natural licorice produces a clinically similar syndrome owing to the effects of a metabolite of glycyrrhetinic acid – derived from glycyrrhizic acid in licorice – which inhibits 11βHSD2. Carbenoxolone, a drug once used for peptic/gastric ulcer disease, has similar effects.

In the presence of 11βHSD2, elevated levels of cortisol are required to achieve activation of the mineralocorticoid receptor (by exceeding the capacity of 11βHSD2 to metabolize cortisol). Hypertension can therefore occur in states of glucocorticoid excess, such as ectopic ACTH syndrome, Cushing’s disease due to a pituitary tumor, iatrogenic Cushing’s syndrome or cortisol-producing adenomas.

You're Reading a Preview

Become a Clinical Tree membership for Full access and enjoy Unlimited articles

Become membership

If you are a member. Log in here